Tag Archives: exo-earth

What can PLATO do for exoplanet astronomy?

As readers of my previous post will no doubt know; the future looks grim for exoplanetary science. Kepler is dead, Hubble will soon follow and we face a long wait before the next generation of planet-hunting instruments. But this week, exoplanet astronomers glimpsed another ray of hope. The next £500million of European Space Agency money looks likely to go to PLATO; an incredible exoplanet-hunting mission set to be even better than Kepler.

PlatoConcept

With an array of 34 telescopes mounted on a sun-shield, PLATO hopes to do things a little differently from both Kepler and TESS. Like those missions, it too will monitor thousands of stars looking for the minute dip in light caused by the passage of a planet in front of its parent star. However, it is in both breadth and depth that PLATO excels; with the combined light of dozens of cameras allowing 5% of the sky to be monitored to incredible accuracy at any one time.

Platofield
Plato’s likely field of view, with 2-3yr stops in red

More than a million stars could be scrutinised for Earth-sized planets by Plato, giving an expected planet haul an order of magnitude higher than Kepler. Plato will also not be tied down into staring at the same stars, instead monitoring 50% of the sky on eight 30-day positions and two longer 3-year fields. This will allow dozens of Earth-like planets with potentially habitable temperatures to be discovered.

The main criticism of the now-defunct Kepler mission was the faintness of these stars (between magnitude 7 and 17). This meant the vast majority of its planetary candidates were impossible to follow up and confirm. The wide field and large array of cameras on Plato allow the brightest stars to be monitored (mag 4-16). That will mean even tiny Earth-sized worlds found by Plato can be followed up and confirmed by ground-based telescopes.

Astroseismology
The concept of Astroseismology

This ability to survey bright stars also allows astronomers to perform extremely sensitive measurements of the stars themselves. By using variations in starlight caused by ripples on the star’s surface, astronomers can accurately pin down not only the size of the star but also the age of the star system. This means, not only can Plato find exoplanets around bright stars, but it can also determine the size and age of many of these planets to a precision only previously dreamed of.

The Transiting Exoplanet Survey Satellite (TESS), to launch in 2017, seems superficially to be a similar mission to Plato. It will potentially discover hundreds of planets before Plato even gets off the ground in 2024. However, the limited sensitivity of its cameras mean it is completely blind to Earth-like worlds around sun-like stars. Astroseismology is also off-limits for TESS, meaning the size of any worlds it does discover will be highly uncertain. Unlike Plato, it will also move between patches of sky every 30 days, allowing only hot, short-period planets to be found.

The-Earth-Moon-System
The only truly habitable planet yet known

With all other new telescopes, both in space and on the ground, limited to finding super-Earths around small stars, Plato is the only mission on the table truly capable of discovering an Earth-like world around a star like our Sun. And by targeting bright stars that allow atmospheric follow-up, it is not impossible to think that, as well as the first truly habitable planet, Plato could find the first inhabited one too.

However, the decision process for ESA’s Cosmic vision (M3 class) is still ongoing. It would be highly unusual for ESA member states to overturn the mission recommended by the science committee, but in the political cauldron that is ESA anything is possible. If Plato does get through unscathed, it will bring riches not just to the universities, countries and industries involved, but more significantly to the world of science as a whole.

———————————————————————————————————

The paper detailing mission design and expected science results can be found at: http://arxiv.org/abs/1310.0696 . The official ESA mission page has similar information at: http://sci.esa.int/plato/

PlatoCandidates
A comparison of Kepler Candidate planets (the majority of which are too faint for follow-up observations) against likely PLATO candidates (significantly brighter, eg with a lower magnitude)
Advertisements

The hunt for an exo-Earth: How close are we?

This blog was first published as a guest post on Andrew Rushby’s excellent II-I- blog.

Lowell_Mars_channels

In the 1890s Percival Lovell pointed the huge, 24-inch Alvan Clark telescope in Flagstaff, Arizona towards the planet Mars. Ever the romantic, he longed to find some sign of life on the Red Planet: To hold a mirror up to the empty sky above and find a planet that looked a little bit like home. Of course, in Lovell’s case, it was the telescope itself that gave the impression of life, imposing faint lines onto the image that he mistook for canals. But, with Mars long since relegated to the status of a dusty, hostile world, that ideal of finding such a planet still lingers. In the great loneliness of space, our species yearns to find a world like our own, maybe even a world that some other lineage of life might call home.

A hundred years after Lovell’s wayward romanticism, the real search for Earth-like planets began. A team of astronomers at the University of Geneva used precise spectroscopy to discover a Jupiter-sized world around the star 55-Peg. This was followed by a series of similar worlds; all distinctly alien with huge gas giants orbiting perishingly close to their stars. However, as techniques improved and more time & money was invested on exoplanet astronomy, that initial trickle of new worlds soon turned into a flood. By 2008 more than 300 planets had been discovered including many multi-planet systems and a handful of potentially rocky planets around low-mass stars. However, the ultimate goal of finding Earth-like planets still seemed an impossible dream.

Kepler-62f_with_62e_as_Morning_Star

In 2009 the phenomenally sensitive Kepler mission launched. Here was a mission that might finally discover Earth-sized planets around Sun-like stars, detecting the faint dip in light as they passed between their star and us. Four years, 3500 planetary candidates and 200 confirmed planets later, the mission was universally declared a success. Its remarkable achievements include a handful of new terrestrial worlds, such as Kepler-61b and 62e, orbiting safely within their star’s habitable zones. However, despite lots of column inches and speculation, are these planets really the Earth 2.0s we were sold?

Even more damning is the size of these planets. Rather than being truly Earth-like, the crop of currently known ‘Habitable planets’ are all super-Earths. In the case of Kepler’s goldilocks worlds, this means they have radii between 1.6 and 2.3 times that of Earth. That may not sound too bad, but the mass of each planet scales with the volume. That means, when compression due to gravity is taken into account, for such planets to be rocky they would need masses between 8 and 30 times that of Earth. With 10ME often used as the likely limit of terrestrial planets, can we really call such planets Earth-like. In fact, a recent study of super-Earths put the maximum theoretical radius for a rocky planet as between 1.5 and 1.8RE, with most worlds above this size likely being more like Mini-Neptunes.

So it appears our crop of habitable super-Earths may not be as life-friendly as previously thought. But it is true that deep in Kepler’s 3500 candidates a true Earth-like planet may lurk. However the majority of Kepler’s candidates orbit distant, dim stars. This means the hope of confirming these worlds by other techniques, especially tiny exo-Earths, is increasingly unlikely. And with Kepler’s primary mission now ended by a technical fault, an obvious question arises: just when and how will we find a true Earth analogue?

Future exoplanet missions may well be numerous, but are they cut out to discover a true Earth-like planet? The recently launched Gaia spacecraft, for example, will discover hundreds of Gas Giants orbiting Sun-like stars using the astrometry technique, but it would need to be around a hundred times more sensitive to discover Earths. New ground-based transit surveys such as NGTS are set to be an order of magnitude better than previous such surveys, but still these will only be able to find super-Earth or Neptune-sized worlds.

TESS_satellite (1)

Similarly, Kepler’s successor, the Transiting Exoplanet Survey Satellite which is due to be launched in 2017, will only be able to find short-period planets with radii more than 50% larger than Earth. HARPS, the most prolific exoplanet-hunting instrument to date, is also due for an upgrade by 2017. Its protégée is a spectrometer named ESPRESSO that will be able to measure the change in velocity of a star down to a mere 10cms-1. Even this ridiculous level of accuracy is not sufficient to detect the 8cms-1 effect Earth’s mass has on the Sun.

While such worlds may well have surfaces with beautifully Earth-like temperatures, there are a number of problems with calling such worlds definitive Earth twins. For a start the majority of these potentially habitable planets (such as Kepler-62e) orbit low-mass M and late K-type stars. These are dimmer and redder than our Sun and, due to the relative distance of the habitable zone, such planets are likely to be tidally locked. The nature of such stars also makes them significantly more active, producing more atmosphere-stripping UV radiation. This means, despite appearances, ‘habitable’ planets around M-dwarfs are almost certainly less conducive to life than more sun-like stars.

e-elt-1_2008

So despite billions spent on the next generation of planet-finders, they all fall short of finding that elusive second Earth. What, precisely, will it take to find this particular Holy Grail? There is some hope that the E-ELT (European-Extremely Large Telescope), with its 35m of collecting area and world-beating instruments will be able to detect exo-earths. Not only will its radial velocity measurements likely be sensitive enough to find such planets, it may also be able to directly image earth-analogues around the nearest stars. However, with observing time likely to be at a premium, the long-duration observations required to find and study exo-earths could prove difficult.

Alternatively, large space telescopes could be the answer. JWST will be able to do innovative exoplanet research including taking direct images of long-period planets and accurate atmospheric spectra of transiting super-Earths and giants. Even more remarkably, it may manage to take spectra of habitable zone super-Earths such as GJ 581d. But direct detection of true Earth-analogues remains out of reach. An even more ambitious project may be required, such as TPF or Darwin. These were a pair of proposals that could have directly imaged nearby stars to discover Earth-like planets. However, with both projects long since shelved by their respective space agencies, the future doesn’t look so bright for Earth-hunting telescopes.

After the unabashed confidence of the Kepler era, the idea that no Earth-like planet discovery is on the horizon may come as a surprisingly pessimistic conclusion. However not all hope is lost. The pace of technological advancement is quickening. Instruments such as TESS, Espresso, E-ELT and JWST are already being built. These missions may not be perfectly designed to the technical challenge of discovering truly Earth-like planets, but they will get us closer than ever before. As a civilisation we have waited hundreds of years for such a discovery; I’m sure we can hold out for a few more.