Tag Archives: Gliese 581d

Gliese 581d is an Ex-Planet

Gliese581TopTrump
Exoplanet poster child

If, in 2009, you asked 18-year-old me to name an exoplanet, then Gliese 581d would have been it. Discovered by an American team of astronomers in 2007, it was, for a long time, the poster child for exoplanetary science. Not only was the first rocky world ever found in the habitable zone of its star where life-friendly temperatures are found, it was also relatively nearby (for astronomy standards) at only 20 light years.

Astronomers used the radial velocity technique to find the first planet around Gliese 581 as far back as 2005. This method relies on the gravitational pull that a planet has on a star as it orbits. This wobble is detectable in the spectra of the starlight, which gets doppler shifted as the star moves back-and-forth, allowing the period and mass of an orbiting planet to be determined. While the first planet, ‘b’, orbited close to the star with a period of only 5.4 days, it was joined by two cooler (and more habitable) planets, ‘c’ and ‘d’ in 2007. This was soon followed in 2009 by Gliese 581e, the smallest planet in the system on an even shorter (3.1d) orbit.

RVgif
Movie credit: ESO

Things started to get even more confusing in 2010 when observers at the Keck observatory announced two more planets (‘f’ and ‘g’) orbiting at 433 and 37 days respectively. This would put ‘g’ between ‘c’ and ‘d’ and right in the middle of the star’s habitable zone. However, new observations of the star with a Swiss telescope showed no such signal. Was there a problem with the data, or could something else be mimicking these planets?

article-2003824-006ED8C000000258-933_634x565[1]
Other stars, just like our sun, have extremely active surfaces
One problem comes when we consider the star itself. Just like our own sun, most stars are active, with starspots skimming across the surface and convection currents in the photosphere causing noise in our measurements. These active regions can often mimic a planet, suppressing the light from one side of the rotating star and shifting the spectra as if the star itself were moving back-and-forth. Add to that the fact that, like planets, activity comes and goes on regular timescales and that cool stars such as Gliese 581 are even more dynamic than our pot-marked sun, and the problem becomes apparent.

The first planet to bite the interstellar dust was ‘f’. At 433 days, its orbit closely matches an alias of the star’s 4.5-year activity cycle, and it was quickly retracted in 2010. Similar analyses with more data also suggested Gliese 581g was also likely to be an imposter, but the original team stuck by this discovery. For the last 3 years, this controversy has simmered, until last month all the data available for Glises-581 was re-analysed by Paul Robertson at Penn State. This showed that not only is Gliese 581g not a planet, but that the poster child itself, Gliese 581d, was also an imposter.

CorrectedPeriodogram
The signal strength of any potential planets with (red) and without (blue) activity correction.

To do this, the team took all 239 spectra of Gl 581 and analysed not just the apparent shift in velocity, but the atomic absorption lines themselves. Using the strength of the Hα absorption line as an indicator for the star’s activity, they compared this to the residual radial velocity (after removing the signal from planet b). This showed that there was a relatively strong correlation between activity and RV, especially over three observing seasons when the star was in a more active phase. They also found that this activity indicator varied on a 130 day timescale.

581_orbits[1]
The new system with only 3 planets
When the team removed the signal from stellar activity, they found that planets ‘c’ and ‘e’ were even more obvious than in previous searches. However the signal for planet ‘d’ dropped by more than 60%, way below the threshold needed to confirm a planet. Even more remarkably, ‘g’ does not appear at all. So what exactly caused this ghostly signal. The planet’s orbital period of 66 days gives us a clue -it is almost exactly half that of the star’s 130 day rotation cycle, so with a few fleeting starspots and the right orientation, a strong planet-like signal at 66 days results.

This case of mistaken identity is a sad one, but thanks to the incredible progress of our field in the last 5 years, their loss barely makes a dent in the number of potentially habitable exoplanets known. Instead, it acts as a warning for planet-hunters: sometimes not all that glitters is gold.

The results are also explained in exquisite detail at Penn State University’s own blog, including an excellent timelapse showing how our understanding of the Gl 581 system has changed over time

Advertisements

Habitable Lifetimes: 50 Billion Years of Summer

For 4 billion years our planet has been a willing host to life; nurturing it as it evolved from the first primitive single celled organisms through to large, intelligent life forms such as ourselves. Over time our sun, too, has evolved; growing in brightness by perhaps as much as 30%. And someday in the distant future Earth’s long glorious summer will end; our fuel-hungry sun glowing ever brighter until the planet we call home is scorched beyond recognition.

habfuture
Media favourite: a dead, uninhabited Earth (in 4bn years)

That is certainly a disappointing conclusion for us Earth-dwellers, but not exactly the one myself and colleagues at the University of East Anglia came up with in a paper published in Astrobiology this morning (despite the mainstream news outlets you might have read).

The slow expansion of our sun has long been predicted by astrophysicists, who revealed the clockwork of stellar evolution as far back as the 1970s. Other developments in the 1990s confirmed this by estimating the range of distances from the sun (and hence temperatures) over which an Earth-like planet would retain liquid water at the surface. The idea of this Habitable Zone has since been the go-to tool for assessing whether a planet could support life, and for as long as it has existed it has been known that the Earth is edging closer and closer to the too-hot-for-life ‘inner edge’.

By using recent models of how stars expand and brighten over time, we were able to put a new (if somewhat uncertain) estimate on when such a transition might happen: between 1.75bn to 3.25bn years from now. But while that might be as far as the papers read, the real science goes much deeper…

By the time Earth is toast, our blue planet will have dwelled for between 5 and 7 billion years in this glorious goldilocks zone. This is the Habitable Lifetime, and by anyone’s standards it is astoundingly long. Without it, life on Earth would have never had time to evolve from inorganic soup into the wonderful range of complex and intelligent creatures we see today.

Image
Numerous habitable zone planets have now been discovered

But Earth is not the only potentially life-supporting planet out there, and instead our research was focused on how long these other planets might remain habitable. Before the sun had brightened, Venus may have enjoyed 1.3bn years of balmy temperatures, while Mars may spend a few billion years bathing in similar sunshine near the end of the sun’s 10bn year lifetime. Almost 1000 alien planets have also now been found including a handful near their star’s habitable zone, not to mention a further 3000 Kepler candidates waiting in the wings.HabLifetimes

Computing the habitable lifetimes of these exoplanets is a more difficult task, however, as every star evolves at a different rate. Luckily stars only change brightness based on one thing: their size, and this can be found for the majority of stars. The 34 planets produce a large range of habitable lifetimes from 0.1 to 20bn years. One particular case is Kepler-22b which will remain in the habitable zone for 4.3bn and 6.1bn years; almost the same as Earth.

Image
All stars <35% the size of the sun will give 50bn year habitable lifetimes

However, for the planet Gliese 581d things get a little interesting: it has a habitable zone lifetime of around 50 billion years! That is more than 10 times the age of the Earth and almost 4 times longer than the age of the universe. This unbelievable timescale is due to a simple quirk of nature. While the brightest stars live fast and die young, some of the smallest stars can survive for hundreds of billions of years; dozens of times older than our sun will ever manage. What’s more these small stars evolve extremely slowly, allowing a well-placed planet to be habitable for much longer than planets in our solar system. If Earth could allow such a plethora of unique and complex species in only 4 billion years, imagine what could happen on an earth-like planet similar to Gliese 581d with 50 billion years of summer?

What all this goes to show is that we already know of places in the universe where life may be able to take hold and survive for billions of years. Some of these planets may be lifeless until long after the Earth is toast, only to warm up and spend 50 billion years in the planetary sweet spot. And even in our solar system life-friendly temperatures may have existed on Venus and may yet occur on Mars, springing new possibilities of life. As I’m sure you’ll agree; that’s a much better message to spread than ‘The Earth is Doomed’.

PS: This was the first scientific paper ever to be published with my name on. To be able to write “myself and colleagues at the UEA came up with in a paper published in Astrobiology” and to say my handiwork is currently being studied by readers of dozens of news outlets makes me as giddy as a small child on christmas.

PPS: My contribution to the paper was to take complex models of how all stars evolve and produce a mathematical function allowing the luminosity for any time period and any stellar mass to be immediately calculated. This is the first step to working out how the habitable zone migrates and hence the habitable lifetime of any planet sat in it’s path. The majority of the work was performed by Andrew Rushby (who wrote a similar blog today) and Mark Claire, both of whom I am incredibly grateful to for the chance to be involved in this work.