A Planet for Every Star?

Astronomers have now found an astonishing 1000 exoplanets. But that pales in comparison to the 100 billion stars in our galaxy. So how can we say whether planets are the norm? And is it possible to find a star that is definitively a planet-free zone?

The current crop of alien worlds comes from a limited selection of well-studied stars. Rather than try to directly spot what is the equivalent of a fleck of dust in a spotlight, astronomers use changes in the light of the star itself to tease out the signal of a planetary companion.


This can be done in a variety of ways, each of them with their own shortcomings. Often the method of discovery itself means that only a tiny selection of flukily-aligned planets will have the potential of being discovered.

For example, the Kepler spacecraft was staring at over 100,000 stars to try to detect the drop in light as exoplanets crossed their star. However, the probability of the average planet making this crossing is extraordinarily low. A planet orbiting at 1AU (the same distance from its star as Earth) will be found in only 1 in 200 such systems! To put that in perspective; for each Earth-like planet found by Kepler, 199 more stars with planets exactly like our own will have been be tossed aside.


The other common detection technique, known as radial velocity, is marginally less wasteful. This uses the to-and-fro of the star imprinted in the colour variations (or spectra) to find the delicate gravitational tug of a planet. While this works for planets in most orbits, if they happen to circle their star in a face-on orientation, no signal will be received at all. For both cases, this means that even if no planetary signal is detected at all, we can’t definitively say there isn’t one there.

These techniques are also only sensitive to planets larger than a certain size. While the Kepler mission was able to find Earth-sized worlds, similar transit surveys from the ground will only ever be able to find large Gas Giants. Any Mars or Mercury-sized planets will be missed entirely. Radial Velocity is also limited by size, with Neptune or Super-Earth-sized worlds the current limit. These searches are both also bias towards planets close to their stars. To detect worlds at Earth distances is a much trickier prospect than those scraping the surface of their stars.

So many planets will be missed entirely. How can we talk with any certainty about the number of planets in the whole Galaxy?


Well, because the exact problems with these techniques are known, astronomers can estimate how many planets we expect to find. If we know the number of stars studied and the probability of an orbit being perfectly aligned, we can use the number of planets found to estimate the number of planets around all stars.

For example, a study of gravitational lensing by planets showed that on average every star has a planet larger than 5 Earth Masses from 0.5 to 10AU. Similar studies have also been done with Kepler, finding basically the same number: More than one planet bigger than Earth from 0 to 2AU around every star. It should also be noted that these results also only cover a tiny portion of potential planets. Distant Jupiters or low-mass rocky planets were missed completely. So, as our searches become more and more sensitive to small and distant worlds, those numbers can only go up. It’s likely that on average every star in the Milky Way has its own Solar System with multiple planets.

But what about lonely, planet-less worlds? There are certain to be stars without any planetary material wandering the cosmos. For example, those dislodged from triple-star systems, as can happen due to gravitational resonance and scattering, might not hold onto any planetary material. But until we’re able to study a star in perfect detail and definitively say no planets exist, we are forced to stick with what has become the default setting: all stars have planets, and it’s just a matter of time until we find them.


3 thoughts on “A Planet for Every Star?

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s